Everyone is looking towards TensorFlow to begin their deep learning journey. One issue that arises for aspiring deep learners is that it is unclear how to use their own datasets. Tutorials go into great detail about network topology and training (rightly so), but most tutorials typically begin with and never stop using the MNIST dataset. Even new models people create with TensorFlow, like this Variational Autoencoder, remain fixated on MNIST. While MNIST is interesting, people new to the field already have their sights set on more interesting problems with more exciting data (e.g. Learning Clothing Styles).
In order to help people more rapidly leverage their own data and the wealth of unsupervised models that are being created with TensorFlow, I developed a solution that (1) translates image datasets into a file structured similarly to the MNIST datasets (github repo) and (2) loads these datasets for use in new models. Continue reading



